Preparation and Reactions of Allenic Zirconium Species from Propargylic Ether Derivatives

Hisanaka Ito, Takanori Nakamura, Takeo Taguchi* and Yuji Hanzawa

Tokyo College of Pharmacy, 1432-1 Horinouchi, Hachioji, Tokyo 192-03, Japan

Key Words: zirconocene; zirconacyclopropene; propargylic ether derivatives; allenic zirconium species

Abstract: The generation of allenic zirconium intermediates by treating propargylic ether derivatives with "Cp2Zr" and their reactions with aldehydes in the presence of borontrifluoride etherate yield anti- β -acetylenic alcohols along with α -allenic alcohols.

The reactions of low valent zirconium species with unsaturated compounds have been widely studied for the formation of carbon-carbon bonds in organic synthesis.¹ In our recent study on zirconium chemistry,² a method for preparing allylic zirconium species was established via elimination of the alkoxy group of α alkoxy zirconacyclopropane derivatives, obtainable *in situ* from allylic ethers with putative zirconocene "Cp₂Zr" (Cp = cyclopentadienyl).³ The allenic zirconium species 2, a very important reactive species in organic synthesis,⁴ could be similarly obtained from propargylic ethers. This paper reports the preparation of 2 from propargylic ethers 1 with "Cp₂Zr" and stereo- and regioselective reactions with aldehydes in the presence of borontrifluoride etherate (BF₃·OEt₂).⁵ The ratio of the β-acetylenic and α -allenic alcohols (3 and 4) obtained from the reaction of 2 with aldehyde appeared to depend on the substitution pattern of the substrate, bulkiness of the substituent (R² or R³) and the reacting aldehyde. It is also shown that the anti/syn ratio of 3 was greatly influenced by the reacting aldehyde.

The results of reactions of 2 with aldehydes are shown in Table I. In all cases, generation of the reactive zirconium species 2 was clearly shown to proceed without the recovery of any of the starting propargylic ethers.⁶ In subsequent reactions of the intermediately generated 2 with aldehydes, BF_3 ·OEt₂ was necessary for obtaining good yields of the products (see, entries 1 and 3). Although poor diastereoselectivities in the reactions of 2 with benzaldehyde were observed,⁷ the reaction with cyclohexanecarboxaldehyde showed the excellent regio- and anti-diastereoselectivity in the formation of 3 (entry 4). These results are in remarkable contrast to the formation of syn- β -acetylenic alcohols in the case of allenylstannanes.⁵

Entry	Substrate	Aldehyde	3:4	anti-3 : syn-3a,b	Yield (%) ^C
1	Ph	PhCHOd,e	79 : 21	3:1	19f
2		PhCHO	86 : 14	3:1	80
3		CHO ^{d,e}	97 : 3	31 : 1	23 ^f
4		СНО	94 : 6	>49 : 1g	76
5	Ph	СНО	95 : 5	29 :1	65
6	Ph	PhCHO	58 : 42	3:1	49f
7		PhCHO	44 : 56 ^h	3:1	42 ^f
8		СНО	>98 : 2 g ,h	22:1	73 ^f
9	Ph	PhCHO	>98 : 2 g ,h		51 ^f
10	Ph	PhCHO	98 : 2	3:1	89
11		СНО	>98 : 28	49 : 1	86
12	TMS	PhCHO	80 : 20	2:1	49
13		ССНО	78 : 22	5:1	49
14	n-C ₆ H ₁₃	PhCHOe	>98 : 2g,h		68

Table I. Reactions of 2 with Aldehydes in the Presence of BF₃•OEt₂

_

a) Regio- and diastereoisomeric ratios were determined by 400MHz ¹H-NMR spectroscopy. b) The anti/syn ratio was determined for 3. The isomeric ratio of 4 was not determined. The relative stereochemistry of 3 was determined as shown in ref. 8. c) Isolated yields of a mixture of regio- and diastereoisomers. d) BF₃-OEt₂ was not used. e) Reactions of 2 with aldehydes were carried out at 50°C overnight. f) Significant amounts (10-40%) of allene derivatives derived from protonation of 2 were obtained. g) No minor isomer could be detected by 400MHz ¹H-NMR spectrum. h) The *in situ* generated 2 was heated at 50°C overnight.

Typical experimental procedure is as follows. Under an argon atmosphere, to a solution of zirconocene dichloride (210mg, 0.72mmol) in THF (3ml) was added a solution of n-butyllithium (2eq) at -78°C. After being stirred at -78°C for 1hr, a solution of 1 (0.6mmol) in THF (2ml) was added and the reaction temperature was raised to ambient temperature. The resultant mixture was stirred at the same temperature for 3hr. A solution of aldehyde (0.9mmol) and BF3•OEt2 (136mg, 0.96mmol) in THF (2ml) was then added dropwise to the reaction mixture at 0°C and resultant solution was stirred at ambient temperature overnight. After quenching the reaction mixture by 10% HCl, the mixture was extracted with ether. The usual work up and purification by column chromatography on silica gel gave mixed products of regio- and diastereoisomers.

In the reaction of 1 (R=TBDMS, R¹=Ph, R²=H, R³=CH₃) with benzaldehyde in the presence of BF₃•OEt₂, a formation of significant amount of α -allenic alcohol and a slight changing of the ratio of regioisomers upon heating of the *in situ* generated 2 at 50°C were observed (entries 6, 7). When cyclohexanecarboxaldehyde was used, β -acetylenic alcohol was obtained as the sole regioisomer (entry 8). Unlike the addition of benzaldehyde, heating of the reactive zirconium species 2 at 50°C overnight, followed by addition of cyclohexanecarboxaldehyde did not change the product ratio (α -allenic/ β -acetylenic alcohol). It is known that β -acetylenic alcohols are the major products obtained from allenic organometallics and aldehydes through SEi' or SE2' process. Indeed, zirconium intermediate 2 derived from 1 (R=Bn, R₁=Ph, R₂=H, R₃=CH₃) with "Cp₂Zr" showed the strong IR absorption at 1900 cm⁻¹ corresponding to allenic zirconium species.^{4b,7} Although the presence of allenic zirconium species 2 to aldehyde in the presence of BF₃•OEt₂ is unclear.

In conclusion, we have developed a new method for preparing the allenic zirconium species via β elimination of alkoxy group on α -alkoxy zirconacyclopropene, which can be easily prepared from chemically stable propargylic ethers and "Cp₂Zr". The reactions of *in situ* generated allenic zirconium species with aldehydes in the presence of BF₃•OEt₂ yielded anti- β -acetylenic alcohol as the major isomer.

References and Notes

 For reviews, see: a) Buchwald, S. L.; Nielsen, R. B. Chem. Rev., 1988, 88, 1047-1058. b) Negishi, E.; Takahashi, T. Synthesis, 1988, 1-19. c) Buchwald, S. L.; Fisher, R. A. Chemica Scripta, 1989, 29, 417-421. d) Negishi, E. Chemica Scripta, 1989, 29, 457-468 and references cited therein.

- 2) Ito, H.; Taguchi, T.; Hanzawa, Y. Tetrahedron Lett., in press.
- 3) This preparative method of "Cp₂Zr" was first applied to organic synthesis by Negishi et al.: a) Negishi, E.; Cederbaum, F. E.; Takahashi, T. Tetrahedron Lett., 1986, 27, 2829-2832. See also: b) Swanson, D. R.; Negishi, E. Organometallics, 1991, 10, 825-826 and references cited therein.
- 4) For reviews on the addition reactions of allenic metals to carbonyl compounds, see: a) Klein, J. Propargylic metalation. In *The chemistry of the carbon-carbon triple bond*; Patai, S., Ed.; John Wiley and Sons, Inc.: New York, 1987; pp. 343-379. b) Moleau, J. -L. Organometallic derivatives of allenes and ketenes. In *The chemistry of ketenes, allenes and related compounds*; Patai, S., Ed.; John Wiley and Sons, Inc.: New York, 1980; pp. 363-413. See also: c) Furuta, K.; Ishiguro, M.; Haruta, R.; Ikeda, N.; Yamamoto, H. *Bull. Chem. Soc. Jpn.*, **1984**, 57, 2768-2776 and references cited therein.
- 5) The reactions of allenylstannanes with aldehydes in the presence of BF₃•OEt₂ gave syn-β-acetylenic alcohols as a major product; a) Marshall, J. A.; Wang, X.-J. J. Org. Chem., 1990, 55, 6246-6248.
 b) Marshall, J. A.; Wang, X.-J. J. Org. Chem., 1991, 56, 3211-3213.
- 6) In the reaction of 1 (R=Bn, R¹=Ph, R²=R³=H) with equimolar amount of "Cp₂Zr", the recovery of starting material along with a formation of (Z)-β-methylstyrene was observed by quenching of the reaction mixture with 10% HCl. This observation is considered to be a result of the very rapid formation of zirconacyclopropene 5 by the reaction of second "Cp₂Zr" with propargylic zirconium intermediate (vide infra). When two equimolar amount of "Cp₂Zr" was employed, no trace of starting material was recovered.

- 7) In the case of allenyltitaniums, the similar results have been reported; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Org Chem., 1982, 47, 2225-2227.
- 8) The stereochemistries of the products in entries 1, 2, 6, 7 (R¹=Ph, R²=Me, R³=H, R⁴=Ph) were determined by comparison of spectral data with authentic sample obtained by opening reaction of the corresponding epoxide according to the reported procedure, see: Yamaguchi, M.; Hirao, I. *Tetrahedron Lett.*, 1983, 24, 391-394. The stereochemistries of the products in entries 3, 4, 5, 8 (R¹=Ph, R²=Me, R³=H, R⁴=cy-C₆) and 12, 13 (R¹=TMS, R²=Me, R³=H, R⁴=Ph or cy-C₆) were determined by comparison of spectral data with authentic samples, see: ref. 4c. The stereochemistry of the product in entry 10 (R¹=Ph, R²=iso-Pr, R³=H, R⁴=Ph) was determined by comparison of spectral data of β-hydroxy-α-isopropylbenzenepropanoic acid methyl ester derived from the major product of entry 10 with authentic sample, see: Ayi, A. I.; Remli, M.; Guedj, R. J. Fluorine Chem., 1981, 17, 127-143. The stereochemistry of entry 11 (R¹=Ph, R²=iso-Pr, R³=H, R⁴=cy-C₆) was speculated in analogy with entry 10.

(Received in Japan 11 March 1992)